EMRX中文网
领取MOLI红包

发布日期:2025-01-04 15:37    点击次数:84

活化反应溅射法的制程原理 镀膜技术的进展带动如光电、机械与半导体等产业的发展,许多新颖薄膜特性如光、电、磁、能源与机械特性陆续被开发,现今显示器、触控面板及半导体产业镀膜制程中常应用直流磁控溅镀技术,透过电源改良与不同反应性气体流量形成不同成分之化合物薄膜,亦通称为反应性溅镀,反应性溅镀之理论基础建立于迟滞现象上,但反应性溅镀存在三个主要问题: 迟滞现象(Hysteresis effect)。 靶面中毒导致电弧放电(Arcing)。 阳极消逝(Disappearing anode effect)。 图一、(a) 氮分压-氮气流量迟滞曲线,(b) 氧分压-氧气流量迟滞曲线 图一(a)、(b)分别为为氮分压-氮气流量及氧分压-氧气流量之迟滞曲线示意图,说明随着反应性气体流量增加,靶材表面由金属态、过渡态转至毒化态,金属靶材表面逐渐被介电质覆盖形成一绝缘层,此绝缘层可视为一平行电极板,导致氩离子产生电荷累积,当正电荷累积过多会与靶材之间发生击穿之现象(此现象称为arcing),并伴随高温高热,蒸发出较大粒子,使膜质下降并影响光学特性,如图二所示,为消除反应性溅镀制程中迟滞现象所造成arcing与电浆密度不稳定所导致薄膜品质与制程不稳定等问题,出现活化反应溅射制程概念[8],制程系统中具有靶材区与电浆源区,此电浆源区亦可称为耦合电浆区。制程中于靶材区通入惰性气体,于电浆区通入混和之反应性气体,使靶材于溅镀过程不受反应性气体影响,制程具有高稳定性,并仍保有溅镀制程之高薄膜品质与大面积高均匀性等优势。 图二、Arcing造成薄膜缺陷示意图 图三、不同反应性气体通量于靶面形成介电质示意图 如图三(a)所示,反应性溅镀于低反应性气体通量时靶材为金属态,反应性气体不易于靶材表面形成化合物,几乎所有反应性气体皆用来形成化合物;随着反应性气体流量提高,靶材表面逐渐形成化合物,如上图3(b)~(d)所示,进而影响制程稳定性与沉积速率。为避免反应性气体对制程造成影响,将溅射与反应分为两阶段[10]:阴极靶材溅射出靶材粒子,附着于基板表面形成超薄金属膜,其厚度约1~4Å,并于一封闭区域产生反应性气体电浆,使反应性气体如氧气、氮气之气体自由基与基板表面超薄金属反应,并透过混和气体比例形成多种反应物,如SiOx、NbxOy或SixNy等化合物,此时属于薄膜成长之成核阶段,重复以上过程使靶材粒子不断反应并凝聚,以形成介电质薄膜,透过分离溅镀与反应性气体间交互作用,借此消除电荷累积、arcing与制程不稳定,并达到高沉积速率之效果,此制程法称活化反应溅射法,如图4所示。 图四、活化反应溅射法示意图 活化反应溅射法的制程优势 透过分离溅镀与反应性气体间交互作用,可有效改善反应性溅镀制程的缺点,除了可保有溅镀制程之高薄膜品质与大面积均匀性等优点外,制程具有更高的稳定性及足以媲美于溅射靶材金属的高沉积速率。 参考资料: [1] J. Čapek and S. Kadlec, "Return of target material ions leads to a reduced hysteresis in reactive high power impulse magnetron sputtering: Experiment," Journal of Applied Physics 121, 171911 (2017). [2] S. Berg, H. ‐O. Blom, M. Moradi, C. Nender, and T. Larsson, "Process modeling of reactive sputtering," Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 7, 1225–1229 (1989). [3] A. H. Simon, "Sputter Processing," in Handbook of Thin Film Deposition (Elsevier, 2012), pp. 55–88. [4] K. Koski, J. Hölsä, and P. Juliet, "Deposition of aluminium oxide thin films by reactive magnetron sputtering," Surface and Coatings Technology 116–119, 716–720 (1999). [5] H. Kakati and S. M. Borah, "Study of hysteresis behavior in reactive sputtering of cylindrical magnetron plasma," Chinese Physics B 24, 125201 (2015). [6] Y. H. Han, S. J. Jung, and J. J. Lee, "Deposition of TiO2 Films by reactive Inductively Coupled Plasma assisted DC magnetron sputtering for high crystallinity and high deposition rate," Surface and Coatings Technology 201, 5387–5391 (2007). [7] C. A. Bishop, "Reactive Sputter Deposition," in Vacuum Deposition onto Webs, Films and Foils (Elsevier, 2011), pp. 375–387. [8] shingo samori, T. Sugawara, S. Agatsuma, M. Ishida, S. Yamamoto, M. Miyauchi, Y. Jiang, and E. Nagae, "RAS Bias Voltage Coating," in Optical Interference Coatings (OSA, 2013), p. WC.3. [9] R. Chodun, K. Nowakowska-Langier, and K. Zdunek, "Methods of optimization of reactive sputtering conditions of Al target during AlN films deposition," Materials Science-Poland 33, 894–901 (2015). [10] F. Huang, B. Xie, B. Wu, L. Shao, M. Li, H. Wang, Y. Jiang, and Y. Song, "Enhancing the crystallinity and surface roughness of sputtered TiO2 thin film by ZnO underlayer," Applied Surface Science 255, 6781–6785 (2009). [11] D. Noguchi, T. Eto, K. Kodama, Y. Higashimaru, S. Fukudome, Y. Kawano, F. Sei, and I. Siono, "Technique for High-Rate, Low-Temperature Deposition of TiO 2 Photocatalytic Thin Film Using Radical-Assisted Sputtering," Japanese Journal of Applied Physics 50, 010204 (2011).




Powered by EMRX中文网 @2013-2022 RSS地图 HTML地图

Copyright Powered by站群 © 2013-2024